Reactivity of intein thioesters: appending a functional group to a protein.

نویسندگان

  • Jeet Kalia
  • Ronald T Raines
چکیده

The success of genome sequencing has heightened the demand for new means to manipulate proteins. An especially desirable goal is the ability to modify a target protein at a specific site with a functional group of orthogonal reactivity. Here, we achieve that goal by exploiting the intrinsic electrophilicity of the thioester intermediate formed during intein-mediated protein splicing. Detailed kinetic analyses of the reaction of nitrogen nucleophiles with a chromogenic small-molecule thioester revealed that the alpha-hydrazino acetyl group was the optimal nucleophile for attacking a thioester at neutral pH to form a stable linkage. A bifunctional reagent bearing an alpha-hydrazino acetamido and azido group was synthesized in high overall yield. This reagent was used to attack the thioester linkage between a target protein and intein, and thereby append an azido group to the target protein in a single step. The azido protein retained full biological activity. Furthermore, its azido group was available for chemical modification by Huisgen 1,3-dipolar azide-alkyne cycloaddition. Thus, the mechanism of intein-mediated protein splicing provides the means to install a useful functional group at a specific site-the C terminus-of virtually any protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology

C hemoselectivity refers to the preferential reaction of a single chemical reagent with one of two or more different functional groups1. One of the most formidable challenges presented to synthetic chemists involves achieving high levels of chemoselectivity and regioselectivity amongst the myriad of reactive functionalities present in biological systems. Despite the onerous challenges, chemists...

متن کامل

Biomimetic synthesis of cyclic peptides using novel thioester surrogates.

Acyl shifts involving N-S and S-S rearrangements are reactions central to the breaking of a peptide bond and forming of thioester intermediates in an intein-catalyzed protein splicing that ultimately leads to the formation of a new peptide bond by an uncatalyzed S-N acyl shift reaction. To mimic these three acyl shift reactions in forming thioesters and the subsequent peptide ligation, here we ...

متن کامل

Streamlined Expressed Protein Ligation Using Split Inteins

Chemically modified proteins are invaluable tools for studying the molecular details of biological processes, and they also hold great potential as new therapeutic agents. Several methods have been developed for the site-specific modification of proteins, one of the most widely used being expressed protein ligation (EPL) in which a recombinant α-thioester is ligated to an N-terminal Cys-contain...

متن کامل

Facile chemical functionalization of proteins through intein-linked yeast display.

Intein-mediated expressed protein ligation (EPL) permits the site-specific chemical customization of proteins. While traditional techniques have used purified, soluble proteins, we have extended these methods to release and modify intein fusion proteins expressed on the yeast surface, thereby eliminating the need for soluble protein expression and purification. To this end, we sought to simulta...

متن کامل

همسانه‌سازی و بیان ایمونوتوکسین اونتاک به صورت هیبریدی با دنباله اینتئینی

Introduction: Inteins (INT) are internal parts of a number of proteins in yeast and some other unicellular eukaryotes, which can be separated from the immature protein during protein splicing process. After identifying the mechanism of intein action, applications of these sequences are be considered in the single- step purification of recombinant proteins and different intein tags were develope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chembiochem : a European journal of chemical biology

دوره 7 9  شماره 

صفحات  -

تاریخ انتشار 2006